LETTER

Note on Invariants of the Weyl Tensor

Bogdan Nita

Received April 30, 2003

Algebraically special gravitational fields are described using algebraic and differential invariants of the Weyl tensor. A type III invariant is also given and calculated for Robinson-Trautman spaces.

KEY WORDS: Invariants; algebraic classification of the Weyl tensor.

1. INTRODUCTION

It is well known (see [1] and [2]) that there are exactly two algebraic invariants to be constructed from the Weyl tensor, namely

\[I = \frac{1}{4} C_{abcd}^+ C^{abcd}, \]
\[J = \frac{1}{8} C_{abcd}^+ C_{\varepsilon \delta \beta \alpha}^+ C_{\varepsilon \delta \beta \alpha}, \]

where \(C^+ \) is the self-dual part of the Weyl tensor. Provided that \(I^3 - 6J^2 \neq 0 \), they determine the intensity of the gravitational field or, more precisely, they determine the Weyl tensor at any point up to a local rotation of frame. These invariants were also shown in [2] to be related with the eigenspinors of the Weyl spinor as well as with the cross ratio of the gravitational principal null directions. Specifically, if \(\chi \)

1University of Houston, Department of Physics, 617 Science and Research Building 1, Houston, Texas 77204-5005; e-mail: bnita@uh.edu

1865
is the cross ratio of any four null directions then
\[I^3 \left[(\chi + 1)(\chi - 2) \left(\chi - \frac{1}{2} \right) \right]^2 = 6J^2[(\chi + \omega)(\chi + \omega^2)]^3 \]
(3)
where \(\omega = e^{\frac{i\pi}{3}} \) is the cube root of unity. In particular \(I^3 = 6J^2 \neq 0 \) if and only if \(\chi \in \{0, 1, \infty\} \) if and only if the space-time is of type (2, 1, 1) or (2, 2).

It is apparent that the two algebraic invariants can provide only a partial classification of the degree of degeneracy of the Weyl tensor. As shown above, \(I^3 = 6J^2 \neq 0 \) is true for both (2, 2) and (2, 1, 1) cases while \(I = J = 0 \) covers all types (3, 1), (4) and flat space. For a more precise classification one has to use differential invariants.

All differential invariants vanish for flat space-time. The same is true for types (4) and (3, 1) space-times built around a nonexpanding congruence of null rays (see [3] and [4]). However, for type N expanding space-times, Bicak and Pravda showed in [3] that there exist exactly one nonzero differential invariant of the second order. That invariant was shown to be useful in analyzing Finley, Plebanski and Przeganowski twisting, type N approximate solutions obtained in [5]; they showed that those solutions contain singularities at large distances and hence cannot describe radiation fields outside bounded sources. An alternate derivation of that invariant has been given in [6]. Pravda found another invariant for type (3, 1) in [4].

In this paper we show that both an invariant for the case (2, 1, 1) and Pravda’s invariant can be derived from Bicak and Pravda type (4) invariant. A complete classification of the degeneracies of the Weyl tensor is shown to be possible using the algebraic and the differential invariants mentioned above. A new second order differential invariant is proposed and its value is calculated for the Robinson-Trautman solutions.

2. CLASSIFICATION

For any \(F_{abcd} \) with symmetries similar to the ones of \(^+C \) we define
\[J_F = F_{abcd;ri}F^*_{abcd;st}F^*_{efgh;rs}F^*_{efgh;tu} \]
(4)
remark that for any null field \(F \), \(J_F \) is the invariant \(J \) in [6]. We are particularly interested in \(J_A, J_B \) and \(J_C \) where
\[A_{abcd} = IB_{abcd} - J^+C_{abcd} \]
(5)
\[B_{cd} = \frac{1}{2} C_{cd} + C_{sr} - \frac{1}{3} I^{+}\delta_{cd} \]
(6)
where \(\delta_{abcd} = \frac{1}{2} (g_{ad}g_{bc} - g_{ac}g_{bd} - \eta_{abcd}) \), \(\eta \) being the Levi-Civita tensor. Notice that when \(I^3 = 6J^2 \) the tensor \(A \) is null \((A_{abcd} = 6\Psi_2^2 (3\Psi_2 \Psi_4 - \Psi_3^2) N_{ab} N_{cd}) \) in
the case (2, 1, 1) and it vanishes in the more degenerate cases (see [1]); for $I = J = 0$ the tensor B is null ($B_{abcd} = -4\Psi_2^2 N_{ab} N_{cd}$) in the (3, 1) case and zero otherwise. Moreover

$$J_A = |96\Psi_2^2 (3\Psi_2\Psi_4 - \Psi_5^2) \rho^2|^4,$$

$$J_B = |8\Psi_5 \rho|^8.$$ \hfill (7)

In conclusion, for space-times admitting an expanding congruence we have the following classification:

- $I^3 \neq 6J^2$, $I \neq 0$, $J \neq 0$: (1, 1, 1, 1);
- $I^3 = 6J^2 \neq 0$, $J_A \neq 0$: (2, 1, 1);
- $I^3 = 6J^2 \neq 0$, $J_A = 0$: (2, 2);
- $I = J = 0$, $J_B \neq 0$: (3, 1);
- $I = J = 0$, $J_B = 0$, $J_C \neq 0$: (4);
- $I = J = 0$, $J_B = 0$, $J_C = 0$: (\(-\)).

3. FURTHER REMARKS ON THE (3, 1) CASE

For $I = J = 0$ case we can alternatively use the first order invariant obtained in [4]

$$J_P = C^{abcd} C_{amcn} C^{lmns} C_{brdx}$$ \hfill (9)

to distinct (3, 1) case from more degenerate ones.

We did not investigate systematically invariants of second order but we mention that if

$$D_{rst} = + C_{abcd} + C_{abcd \; ,rst}$$ \hfill (10)

then

$$D = D_{\{\alpha\beta\}} D^{\{\alpha\beta\}}$$ \hfill (11)

has the following expression for a (3, 1) Robinson-Trautman solution with $P = P(\sigma, \xi, \eta)$:

$$D = \frac{36\rho^4}{r^{14}} (K_2^2 + K_4^2) \left[\frac{1}{8} (K_2^2 + K_4^2) K + p (K_2^2 - K_2^2 K_4^2) \right]$$ \hfill (12)

$$+ 9\frac{\rho^4}{r^{13}} \left[(K_2^2 + K_4^2)^2 \right]_{,\sigma}.$$ \hfill (13)

Remark that for (3, 1) and (4) cases, the geometry of each light cone is independent of the one of its neighbors; and both J_P and J_B depend only on the geometry of each individual light cone. However, the invariant D also depends on the rate of change of the geometry from one light cone to another.
ACKNOWLEDGEMENT

The author is grateful to Ivor Robinson for his insights and comments.

REFERENCES