Normality Algorithms

Preliminaries

Theorem. If R is a relation schema with only two attributes, AB, then R is in BCNF
pf: There are only four possibilities for F...∅, \{A→B\}, \{B→A\} or \{ A→B, B→A\}. R is
BCNF in all of these.

Lemma:
If R is a relation schema then R is not in BCNF if there are attributes A and B s.t. R-
AB→A
Pf: Let X-A → A be a nontrivial FD where X is not a superkey (Otherwise R would be
in BCNF). There must exist some attribute B in R s.t. B is not in X ∪ A (if not, X would
be a superkey).

Therefore X-AB→A and consequently R-AB→A.

Procedure Decompose(R, F, A, B,*R1,*R2)
input: relation schemata R,R 1,R 2;
set of FD's F
attributes A, B // (R-AB) → A
BEGIN
Y = R-B
WHILE there are A' and B' s.t. Y-A'B'→ A',
Y = Y-B'
END_WHILE
R 1 = R-A;
R 2 = Y
F 1 = subset of F that still applies to R 1;
F 2= subset of F that still applies to R 2;
END
// Y is in BCNF by theorem.

BCNFs from R and F

Algorithm: Lossless join decomposition into BCNF (R, F)

Input: relation schema R
set of FD's F

Output: the decomposition ρ.

BEGIN
Z = R;
ρ = ∅;
IF there are no attributes A,B s.t. Z-AB→A,
THEN ρ = {Z}
ELSE
 WHILE there exist A,B s.t. Z-AB→A
 Decompose(Z,F,A,B,R₁,R₂);
 Z = R₁;
 ρ = ρ ⊃ {R₂};
 END_WHILE;
 ρ = ρ ⊃ {Z}.
END

Extended example: R₀(CTHRSG)

\[F = \{C \rightarrow T, \text{HR} \rightarrow C, \text{HT} \rightarrow R, \text{CS} \rightarrow G, \text{HS} \rightarrow R, \text{HR} \rightarrow T\}\]

A candidate key is HS, since

\[C^\perp = CT; \quad \text{HR}^\perp = HRCT; \quad \text{HT}^\perp = HTCR; \quad \text{CS}^\perp = CSGT; \quad \text{HS}^\perp = HSRCTG;\]

Let A be played by R, and B be played by G. Since HT→R, then

CTHS → R, ie R₀-GR → R, so
Decompose (R₀, F, R, G, R₁, R₂)

After first application of the while loop, R₁=R₀-R and Y=CTHRS

Now HT→R so attributes C and S can be discarded in successive applications of the loop, and the final result of decompose is

\[R₁ = R₀-R = CTHSG\]
\[Y = \text{HT}R, \text{so...}\]
\[\rho = \{\text{HT}R\}\]
\[Z = R₁;\]

repeat the algorithm A being played by G and B by H.

/* CS→G means that R₁-HG→G */

Decompose (R₁, F₁, G, Y, R₁₁, R₁₂)

R₁₁ = R₁ - H and Y winds up being CSG
\[\rho = \rho \cup \{\text{CSG}\} = \{\text{HT}R, \text{CSG}\}\]
\[Z = R₁₁(CTHS)\]

repeat algorithm with A being played by T and B by H

R₁₁₁ is CHS and Y is CT
\[\rho = \{\text{HT}R, \text{CSG}, \text{CT}\} \text{ and}\]
\[Z = \text{CHS which has no further qualifying pairs so the final}\]
\[\rho \text{ is } \{\text{HT}R, \text{CSG}, \text{CT}, \text{CHS}\}.\]
NOTA BENE: The algorithm does not guarantee that the decomposition will preserve all the dependencies...in fact in our example..

\[F_1 = \{ HT \rightarrow R \}, F_2 = \{ CS \rightarrow G \}, F_3 = \{ C \rightarrow T \}, \text{ and } F_4 = \emptyset \ldots \]

try to deduce the FD HR \(\rightarrow \) C from those three...

3NFs from R and F

Algorithm: Dependency preserving decomposition into 3NFs.

```
Input: relational schema R,  
      Set of FD's F  
Output: the decomposition.
```

Method:

a) If there are any attributes of R not involved in any dependency of F, either on the left or right, then any such attribute can, in principle, form a relation scheme by itself, and we shall eliminate it from R.

b) If one of the dependencies in F involves all the attributes of R, then the output is R itself.

c) Otherwise, find a minimal cover of F, \(F_{\text{min}} \), and the decomposition \(\rho \) to be output consists of scheme XA for each dependency \(X \rightarrow A \) in \(F_{\text{min}} \).

In our previous example, following the algorithm we obtain 5 tables \{CT, HRC, HTR, CSG, HSR\}.

In fact we have for \(R_0(CTHRSG) \):

\[F = \{ C \rightarrow T, HR \rightarrow C, HT \rightarrow R, CS \rightarrow G, HS \rightarrow R, HR \rightarrow T \} \]

a) No elimination of attributes
b) No FD involves all attributes of \(R_0 \)
c) Find \(F_{\text{min}} \):

 Step 1: All FDs have rhs with only one attribute
 Step 2: Could we remove any attribute in the lhs of any FD?

 \[F = \{ C \rightarrow T, HR \rightarrow C, HT \rightarrow R, CS \rightarrow G, HS \rightarrow R, HR \rightarrow T \} \]

 Consider HR \(\rightarrow \) C: Drop H? \(R^+ = R \) in \(F \), but \(R^+ = R \), in \(J_1 \)
 Drop R? \(H^+ = H \) in \(F \), but \(H^+ = HC \), in \(J_2 \)

 Consider HT \(\rightarrow \) R: Drop H? \(T^+ = T \) in \(F \), but \(T^+ = TR \), in \(J_3 \)
 Drop T? \(H^+ = H \) in \(F \), but \(H^+ = HR \), in \(J_4 \)

 Consider CS \(\rightarrow \) G: Drop C? \(S^+ = S \) in \(F \), but \(S^+ = SG \), in \(J_5 \)
 Drop S? \(C^+ = CT \) in \(F \), but \(C^+ = CGT \), in \(J_6 \)

 Consider HS \(\rightarrow \) R: Drop H? \(S^+ = S \) in \(F \), but \(S^+ = SR \), in \(J_7 \)
 Drop S? \(H^+ = H \) in \(F \), but \(H^+ = HR \), in \(J_8 \)

 Consider HR \(\rightarrow \) T: Drop H? \(R^+ = R \) in \(F \), but \(R^+ = RT \), in \(J_9 \)
 Drop R? \(H^+ = H \) in \(F \), but \(H^+ = HT \), in \(J_{10} \)

So no changes
Step 3: Find inessential FDs:
- Remove C → T; C⁺ = C, so this one is essential
- Remove HR → C; HR⁺ = HRT, so this one is essential
- Remove HT → R; HT⁺ = HT, so this one is essential
- Remove CS → G; CS⁺ = CST, so this one is essential
- Remove HS → R; HS⁺ = HS, so this one is essential
- Remove HR → T; HR⁺ = HRCT, so this one is inessential

Step 4: Therefore the decomposition is
\[R = \{CT\} \cup \{HRC\} \cup \{HTR\} \cup \{CSG\} \cup \{HSR\} \]

Decomposition into 3NF with a Lossless Join and Preservation of Dependencies.

Theorem: If \(\sigma \) is the 3NF decomposition of \(R \) given by the previous algorithm, and \(X \) is a key for \(R \). Then \(\mu = \sigma \cup \{X\} \) is a decomposition of \(R \) with all relation schema in 3NF; the decomposition preserves dependencies and has the lossless join property.

Proof: Another time.

Remark: In many cases, the decomposition \(\mu \) is not the smallest one having the two properties. We can remove relation schemas in \(\mu \), one at a time, as long as both properties are preserved. In fact, if any key of \(R \) is already in one of the relations, we don’t need to add it to the set \(\sigma \), to obtain both properties.

Example: We study the relation: \(R \) (ABCDEFG), with the set of FDs

\[F = \{AB \rightarrow C, D \rightarrow EG, ABC \rightarrow A, C \rightarrow A, BE \rightarrow C, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\} \]

We obtain the decomposition

\[R = \{ABC\} \cup \{DEG\} \cup \{CA\} \cup \{BEC\} \cup \{BCD\} \cup \{CEG\} \cup \{ACDB\} \]

Because

\[F_{\text{min}} = \{AB \rightarrow C, D \rightarrow EG, C \rightarrow A, BE \rightarrow C, BC \rightarrow D, CE \rightarrow G, ACD \rightarrow B\} \]

This decomposition is not lossless join decomposition. We need to find a key for \(R \)

\[A^+ = A; AB^+ = ABCDEG; ABF^+ = ABCDEFG \]
Therefore our decomposition of \(R \) wit a lossless join and preserving dependencies is:

\[
R = \{ABC\} \cup \{DEG\} \cup \{CA\} \cup \{BEC\} \cup \{BCD\} \cup \{CEG\} \cup \{ACDB\} \cup \{ABF\}
\]

Major exercise: use the algorithms to find 3NF and BCNF decompositions of the relation

Lots (Id#, County, Lot#, Area, Price, Taxrate)

\(F = \{I \rightarrow CLAPT, CL \rightarrow IAPT, C \rightarrow T, A \rightarrow P, A \rightarrow C\} \)