Overview

The goal of this project is to map shrub abundance and woody biomass in Arctic tundra using NASA moderate resolution solar wavelength bidirectional reflectance factor (BRF) imagery over the Arctic tundra biome by exploiting the structural information in these data using multi-angle remote sensing methods. The tasks required for this project thus divide into three categories: acquisition of reference data; development of techniques to exploit NASA Earth Observing System MISR and MODIS data sets via BRDF and geometric-optical model inversion and spectral-angular metrics; and implementation for mapping over large areas (e.g., Arctic tundra).

Remote sensing of shrubs in Arctic tundra with moderate resolution MISR and MODIS reflectance data is challenging: shrubs are dark in the red wavelengths ($\text{BRF} < 0.05$ for alder leaves), the non-shrub grass matrix has a similar spectral reflectance ($\text{BRF} \approx 0.065$), and illumination is weaker than at lower latitudes with long atmospheric paths increasing uncertainty in surface BRF estimates that the mapping ultimately depends upon. Additional challenges are posed by the heterogeneity of landscapes, including talus slopes and high variation in surface water, with some
landscapes marked by numerous ponds or water tracks. Attempts to map shrubs using spectral data have until recently focused on the use of the Normalized Difference Vegetation Index, an approach that has been shown from first principles to be somewhat compromised (e.g., Rees et al. 1998). Beck et al. (2011) used Landsat imagery with a Random Forest regression algorithm to produce the first circa 2000 “baseline” maps of fractional cover for all shrubs and tall shrubs (height > 1 m) for the North Slope of Alaska. This approach benefits from the much smaller ground-projected field-of-view (30 m) and consequently higher cover values and larger in-pixel signal than available from MISR or MODIS (≥250 m). However, the Landsat-based maps are subject to obvious anomalies (e.g., missing data, disjunctures, and spurious shrub predictions in the Canning River delta) and have low correlations with our shrub cover reference data (intermediate database). Since our Arctic shrub mapping project exploits the effects of physical shrub canopy structure on NASA Earth Observing System MISR and MODIS reflectance data, the focus is on estimating tall shrub – rather than all shrub – abundance.

Summary of Findings To Date

In this project we worked first to construct a robust tall shrub canopy reference database for an extensive array of sites; test techniques for exploiting MISR and MODIS data via BRDF and geometric-optical model inversion, multi-angle metrics, and empirical methods; and implement mapping over the N. Slope of Alaska and subsequently the entire Arctic tundra biome. The project’s key outputs and findings to date are:

- Reference data are key to mapping and the only means of evaluating mapping results. We therefore expended important efforts on the construction of an unique, robust, and extensive validation database that will be disseminated via the North American Carbon Program.

- For mapping shrubs over large areas, we selected a Boosted Regression Tree (BRT) prediction method that can exploit angular metrics – such as BRDF model kernel weights – to provide more accurate shrub cover estimates, having previously assessed geometric-optical (GO) model inversion with MISR and MODIS data, the MODIS structural scattering index (SSI) metric, artificial neural network, and Bootstrap Forest approaches. We selected MISR kernel weights for the mapping, as these are less noisy than the corresponding MODIS weights that are based on BRF data accumulated over several weeks. Geometric-optical model inversion for mapping tall shrubs over the tussock grass, lichen, rock, and dwarf shrub surfaces of Arctic tundra is compromised by the difficulty of predicting the angular response (i.e., BRDF) of the non-tall-shrub background; and by the low contrast with erect shrubs.

- At MODIS and MISR scales (~250 m) tall shrub fractional cover is low even in the most dense scenarios, with a mean of 0.06 (maximum = ~0.29). This represents a major challenge for tracking shrub cover changes because the signal is small and the range narrow. The low precision of cover estimates means that it is difficult to reliably determine changes in shrub cover over the 2000-2010 period; we will extend our mapping to 2014 if time allows.

- Mapping trees at the tundra-taiga interface can be performed with good accuracy using GO model inversion against MISR red band multi-angle BRFs, providing maps of canopy cover and height, while spectral measures can be deceptive, with larger NDVI for grass or crops vs forest.
Significant Milestones

- **July 2009** Official start of project, engagement of PhD student at Boston University.
- **August 2009** First field campaign on the Chandler River, following aerial survey.
- **January 2010** Engagement of PhD student at Montclair State University
 - Development of the CANAPI algorithm for crown detection.
 - First experiments with MISR GO models for tundra tall shrub mapping.
- **July 2010** Second field campaign on the Chandler River.
- **May 2011** Development of new, fast version of AMBRALS with WoD output.
 - First tundra-taiga mapping efforts with a MISR/GO approach.
- **July 2011** Third field campaign, on the Dalton Highway.
- **February 2012** Experiments with MODIS BRDF and GO models for shrub mapping.
- **2012-2013** Assessment of shrub cover mapping methods (GO model, SSI, empirical).
 - Reference database increased to >1,000 sites on N. Slope of Alaska.
 - Second tundra-taiga mapping effort with a MISR/GO approach.
- **December 2013** Production of shrub cover maps for North Slope of Alaska, 2000 & 2010.
- **March 2014** Production of v.1 pan-Arctic maps of shrub abundance, 2000 & 2010.
 - Completion of the reference database and metadata for NACP/ORNL.
- **May 2014** Begin production of v.2 (gap-filled) pan-Arctic shrub maps, 2000 - 2014.

Significant Outputs

- Large, robust, shrub cover reference database for the North Slope of Alaska.
- Pan-Arctic shrub abundance maps, 2000 and 2010 (v.1).
- New, fast version of the AMBRALS algorithm with Weight of Determination outputs.
- Establishment of geometric-optical model inversion for mapping the tundra-taiga interface.
- Papers published:

Anticipated forthcoming manuscripts (lead author, submission target):

- Pan-Arctic tall shrub abundance from MISR, 2000-2013 (Chopping, July 2014).
- Shrub abundance and albedo in Arctic tundra (Duchesne, 2014).
- Mapping the Tundra-Taiga Interface with MISR (Chopping, late 2014).

Research Activities, November 2012 – December 2013

The tasks envisaged for this period were to:
We focused on expansion and enhancement of the reference database, extension of mapping to the pan-Arctic, and methods for mapping trees at the tundra-taiga interface; the penultimate task will be completed by August 2014; and the last will be effected in late 2014.

Research Activities, April – October 2012

We used the reference data on shrub cover and height collected at field sites on the North Slope of Alaska in 2010 and 2011 and used these to calibrate semi-automated methods that exploit a version of the Canopy Analysis with Panchromatic Imagery (CANAPI) algorithm (Chopping, 2011) adapted for shrubs in Arctic tundra. This allowed us to generate a larger reference database, using high spatial resolution (0.6 m) QuickBird panchromatic imagery. The intermediate reference database spanned 418 sites of 250 m on a side, corresponding to the grid onto which MISR red band multi-angle imagery is mapped. We checked and tested the validation data, comparing field-and imagery-based estimates, and corrected the latter for a unit error (pixels vs meters) in earlier estimates. We also recalculated and applied new adjustment factors to the CANAPI-based estimates and used these new data to recalibrate the background BRDF kernel weight predictions used in our GO model inversion protocol.

We worked on evaluation of several multi-angle remote sensing methods for large scale mapping over Alaskan Arctic tundra (MISR, MODIS) and the tundra-taiga transition zone in the Kola Peninsula (MISR). Over the summer of 2012 efforts were focused on checking our validation database and applying these results to GO model inversion work (MISR, MODIS), exploitation of BRDF model kernel weights in predicting tall shrub cover (MISR), and comparisons with the Landsat-derived “circa 2000 baseline” total and tall shrub maps (Beck et al. 2011). In particular, we tested the use of alternative background BRDF prediction variables in GO model inversions, including spectral measures (NDVI) and “reduced” BRDF models with only two kernels (iso+vol and iso+geo), since we had shown that retrieval accuracy is owing the lack of precision in predicting the volume-scattering kernel weight. These attempts resulted in accurate retrievals when optimal background BRDFs were used – but again, poor correlations when regression equations were used to predict background (non-shrub) BRDFs.

Efforts to exploit the isotropic, volume scattering, and geometric scattering kernel weights (retrieved via inversion of the RossThick-LiSparseMODIS-Reciprocal (RTLS-R) BRDF model against MISR red band BRFs mapped at 250 m) have been more promising, especially when these metrics are combined with nadir camera BRFs, as reported below. The project’s close date was extended to December 31, 2013 (and then again to December 31, 2014) in order to allow us time to fully evaluate the potential for increasing precision in mapping tall shrubs using our extended reference database; expand the mapped area and fill gaps to produce wall-to-wall pan-Arctic maps; explore the potential for mapping the tundra-taiga interface; and compare the trajectory of shrub abundance with that of summer albedo.
Comprehensive Reference Database: Expansion, Enhancement, and Final Product

A reference database with tall shrub fractional cover estimates for 1065 250 x 250 m sites has been built and will be made available to the community through the North American Carbon Program/Oak Ridge National Laboratory (see attached draft metadata document). In the summer of 2013 the database was expanded and enhanced using CANAPI to obtain cover estimates for additional sites that are both geographically distant and ecologically distinct from those already included. We were able to do this thanks to the availability of large volumes of high resolution imagery from the National Geospatial-Intelligence Agency (NGA) Commercial Archive Data (http://cad4nasa.gsfc.nasa.gov/) that provides access for NASA Earth Science Investigators. The additional 250 x 250 m sites were selected from 20 panchromatic QuickBird and GeoEye scenes and were chosen to include locations within four broad physiognomic categories and across the broad latitudinal and longitudinal range of the North Slope of Alaska. The CANAPI algorithm was tuned for each subset and estimates were adjusted using regression coefficients derived previously.

The database was constructed following aerial survey, field inventory (2010, 2011), and computer-aided interpretation of large volumes of QuickBird and GeoEye high resolution panchromatic imagery. Estimates of shrub fractional cover, mean crown radius, and mean shrub height were collected at 24 sites following a belt-transect method; these allow the image-derived estimates to be calibrated. In the lab, structural information was obtained for the field sampled sites using CANAPI. CANAPI identifies and delineates shrub crowns and the length of the shadow cast by them (Chopping, 2011). The macro can be used to estimate mean shrub height, mean crown radius, total number of shrubs, and fractional cover (Figure 1). CANAPI-derived estimates were adjusted to the field estimates using linear equations (in situ field measurements are always considered more reliable).

Figure 1. Panchromatic QuickBird subsets for two sites. Circles indicate CANAPI-identified shrub crowns. In (a) shrubs are sparsely distributed but CANAPI identifies almost all of them. In (b) shrubs are arranged in thickets along the water track; although CANAPI is unable to isolate individual shrubs it is still able to map shrub cover.
Intermediate Reference Database & Calibration/Validation with Field Data

To establish an extensive database based on field measurements of shrub canopy density, cover and height, a field campaign was carried out on the North Slope of Alaska during summer, 2010 (July 24th–August 12th). A crew of three people descended the Chandler and Colville Rivers using inflatable boats from the Brooks Range (68°45'06.4”N, 152°18'35.8”W) to the Arctic Coastal Plain (69°40'01.6”N, 151°30'29.7”W). Sampling sites fell in an altitudinal and climatic gradient, with the southernmost sites at higher elevation (~280 m a.m.s.l.) and influenced by the continental climate coming from the Brooks Range; while the northernmost sites were located at much lower elevations (~95 m a.m.s.l.), where maritime climate conditions prevail.

Structural data for the woody Arctic vegetation were collected at fourteen sites located within 1 km of a river. Each sampling site had an area of 250 × 250 m which corresponds to the mapped MISR cell (projected). The sites were selected in advance using aerial photographs and high resolution imagery (QuickBird and IKONOS) and represent a variety of vegetation types and conditions. The sampling period was in the peak growing season; therefore no phenological changes were observed in the vegetation at that time.

The belt transect method was used to survey 13 out of the 14 sites. At site 14th, all shrubs were sampled as they were so few. Transects were 5 m wide and 250 m long and the number of transects per site varied between 5 or 10 depending on the difficulty to access the area (Figure 2(a)). The geographic location was recoded and a photographic record of each surveyed shrub was taken and used to estimate width (horizontal extent) and height (vertical extent from base to top of foliage) (Figure 2(b)). These estimates allow us to determine fractional cover, mean crown radius, and mean shrub height for the entire 250 × 250 m area of each site.

Figure 2. (a) Arrangement of the belt transects at a site with five transects. The transects were laid out according to the altitudinal gradient of the terrain. (b) field picture at sampling site collecting photographic record of shrubs. Next to the shrub is a vertical 2m scaled rod used later to calibrate crown width and height of the shrub.

Enlargement of the structural database was pursued by exploiting the CANAPI algorithm in conjunction with five QuickBird panchromatic scenes of about 27.5 km² each that covered 10 out of the 14 sampling sites (Figure 3). For the other four sampling sites it was not possible to use CANAPI to measure shrub cover and height because the available IKONOS imagery was not suitable. Our field data are considered to be very reliable because each shrub was physically measured in situ. CANAPI is a user-tunable algorithm that uses high resolution panchromatic
imagery to identify and measure tree or shrub crowns and heights by estimating the length of the shadows cast (Chopping, 2011). However, in this environment CANAPI estimates demonstrate some systematic errors. CANAPI outputs the crown radius and area for all detected shrubs; and the height of each shrub that casts a shadow that is not truncated by another crown or the edge of the image. These estimates were used to estimate mean shrub height, mean crown radius, total number of shrubs, and fractional cover for each site.

Figure 3. Google Earth representation of part of Alaska above the Brooks Range between 68.7° N and 69.7° N, displaying the locations of the QuickBird images used in reference data work as red rectangles. The reference database was constructed using field data collected at field sites within these areas and extended to 418 250 × 250 m sites.

The construction of the intermediate reference database of 418 sites proceeded in two steps: the derivation of linear equations for adjustment of the CANAPI-derived estimates for the field sites so that they more closely match (field data are considered more reliable); followed by the application of these equations with the outputs of CANAPI runs for a much larger number of sites.
The first step toward the extension of the reference database was to derive CANAPI estimates for the 10 sampling sites that had field data associated with it, and to compare both estimates. The difference between field estimates and the CANAPI estimates for fractional cover was analyzed in conjunction with the QuickBird chips for the 10 sampling sites. This revealed that as the number of shrub clusters increased (i.e., thickets), CANAPI underestimated fractional cover because it was unable to break down the clusters into individual shrubs. Where vegetation was sparse, CANAPI estimates were very close to field data. Similar behavior occurred for total number of shrubs estimates. On the other hand, mean crown radius and mean height CANAPI estimates were always lower in comparison with the field estimates. In the case of mean crown radius this difference (always less than 0.3 m) seems to be a systematic error of CANAPI probably due to pixel resolution (panchromatic QuickBird resolution is 0.6 m). As for mean height, the difference between CANAPI and field estimates might be due to the fact that CANAPI did not capture the entire length of the shadows cast by shrubs.

Figure 4. Scatter plots showing relationships between CANAPI and field estimates for 10 sampling sites. (a) correlation for fractional cover ($R^2 = 0.83$), (b) correlation for mean crown radius ($R^2 = 0.89$), (c) correlation for mean shrub height ($R^2 = 0.26$), and (d) correlation for total number of shrubs ($R^2 = 0.42$).

In order to adjust the fractional cover, mean crown radius, mean height, and total number of shrubs CANAPI estimates, regression coefficients were derived by correlating the CANAPI estimates against the corresponding field estimates via simple linear regressions, for the 10 sampling sites. Outliers were omitted from the analysis (Figure 4). High R^2 values for fractional cover and mean
crown radius (0.83 and 0.89 respectively) suggest that it is appropriate to use the regression coefficients to adjust CANAPI estimates. Since the regression for total number of shrubs had a medium-low R^2 (0.42), using the regression equation to adjust CANAPI estimates must be done with caution. In the case of mean shrub height, the R^2 was quite low (0.26) and it suggests that the regression coefficients are inadequate for adjusting the CANAPI estimates.

Subsequently, 418 subsets of 250 \times 250 m – aligned with the Albers Conical Equal Area grid onto which the MISR data are mapped – were selected from the five QuickBird scenes covering our Chandler/Colville sites (Table 1). These subsets were explicitly chosen to include representatives from three geomorphologic units: floodplains, hills, and interfluvies. CANAPI was run on each subset and estimates were adjusted using the regression equations previously derived. This resulted in a robust shrub cover database that includes a wide range of conditions and cover values. It will be used for training of the canopy reflectance/empirical model and validation of the retrieved fractional cover values from the model.

Table 1. DISTRIBUTION OF SUBSETS IN THE INTERMEDIATE DATABASE ACCORDING TO LANDFORM AND LATITUDINAL GRADIENT OF THE QUICKBIRD SCENE

<table>
<thead>
<tr>
<th>QUICKBIRD SCENE</th>
<th>GEOLOGICAL FEATURE</th>
<th>NUMBER OF SUBSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB_20 High Latitude N69.65, W151.45</td>
<td>Hills</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Interfluves</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Floodplains</td>
<td>35</td>
</tr>
<tr>
<td>QB_40 Mid Latitude N69.12, W151.82</td>
<td>Hills</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Interfluves</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Floodplains</td>
<td>28</td>
</tr>
<tr>
<td>QB_50 Mid Latitude N69.04, W151.77</td>
<td>Hills</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Interfluves</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Floodplains</td>
<td>46</td>
</tr>
<tr>
<td>QB_R1C1 & QB_R1C2 Low Latitude N68.78, W152.15</td>
<td>Hills</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Interfluves</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Floodplains</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>418</td>
</tr>
</tbody>
</table>

Analysis of the reference database reveals that fractional cover is relatively low, even in the most dense scenarios. The maximum fractional cover was 0.29 and the mean value was 0.056 (Figure 5(a)). This represents a challenge for tracking changes in shrub cover at the scale of moderate resolution remote sensing instruments because the signal is very small and the cover range is quite narrow: this will make it more difficult to determine that changes seen from year to year are owing to real changes in shrub cover and not to noise in the estimation. Mean crown radius varied between 0.46 m and 1.65 m (Figure 5(b)). The site that had the least number of shrubs still had 151 shadow-casting individuals, while the site with the most shrubs had 1598. The mean number of shrubs was 665 (Figure 5(c)).
In 2013 we expanded the reference database further by using CANAPI with sites that are distant and ecologically distinct from those included in 2012 using imager from the National Geospatial-Intelligence Agency (NGA) Commercial Archive Data site (http://cad4nasa.gsfc.nasa.gov/) that provides access to large volumes of high resolution imagery for NASA Earth Science investigators.

MISR Surface BRF Assessment using Field Radiometry

In order to accurately retrieve surface reflectance from MISR – which is the input data for the models used in our mapping efforts – the effect of the atmosphere (via clouds, aerosols, gases, and water vapor) must be removed. This is especially important at high latitudes where path lengths are long. The MISR Terrain data used are already atmospherically corrected by NASA; however; there may be some residual atmospheric effects that contribute to error in shrub cover estimates. Assessment of the propagation of this error is been carried out using scaled-up field-derived BRDF samples collected during the Dalton field campaign in the summer of 2011.

Nine sites were selected along the Dalton Highway, the only road that connects interior Alaska with the coastal plain. Data collection was done more than a kilometer away from the gravel road to avoid the effects of windblown dust on the vegetation. Each site had an area of 250 10× 250 m and is aligned with the grid onto which the MISR Terrain data are mapped. The sites were selected in advanced using high resolution GeoEye imagery and they represent a variety of conditions and vegetation types. Unsupervised classification of multispectral high resolution images for each site was performed before the field campaign in order to locate sampling points within spectrally homogeneous areas. Initially, each site was segmented into five categories and three sampling points were selected within each category (15 locations in total); but this was found to be too difficult in the field, so the number of sampling points was reduced to seven per site (Figure 6).
The data collected at each site consisted of seven sets of multi-spectral and multi-angular photos of the target vegetation. Each set included two scans on the solar principal plane and two in the principal plane. Viewing angles resembled those from MISR ±70°, ±60°, ±45°, ±30°, ±20° degrees (forward and back-scattering direction) and nadir. Each set had a total of 44 multi-spectral multi-angular photos. Following the scans, color photos were taken at nadir view with a Canon point-and-shoot camera to facilitate identification of vegetation species in the lab. The whole process of taking the pictures for each set took between 8 to 10 minutes. Radiometric data collection was limited to the period between 10:00 am and 3:00 pm when the solar intensity was the highest and to keep a consistent solar zenith angle; and to times when cloud cover was less than 30%.

The instrument used for the collection of radiometric data was an ADC Tetracam camera which is a single sensor digital camera designed for capturing visible light in blue-green, red and NIR bands. The camera was mounted on a frame at 3.5 m height giving a ground resolution element of ~0.9 m at nadir which increased with view zenith angle. Reflectance panels of 2%, 5%, 10%, 20% and 40% reflectance were placed within the field of view of the camera for post-calibration of the camera DN to reflectance of the target vegetation. Calibration of the digital number was achieved for each sampling point by regressing the digital camera number against the known reflectance of the reflectance panels at nadir in the red band (Figure 7).
Regression coefficients for each sampling point were then used to derive the BRF of the target vegetation at the different viewing angles. In the case of site six, there were seven sampling points (Figure 8). BRF graphs in the red band varied depending on the composition of the target vegetation. Sampling points have different proportions of tussock, moss, cotton grass, and dwarf birch.

Although the ground reflectance measurements were taken at similar viewing angles to those of the MISR sensor, they are not exactly the same. In order to account for differences in the geometry of the viewing and illumination angles and allow valid comparisons, the RossThick-LiSparse-Reciprocal BRDF model was adjusted against the ground bidirectional reflectance measurements using the Algorithm for Modeling Bidirectional Reflectance Anisotropies of the Land Surface (AMBRALS; Wanner et al. 1995). The retrieved isotropic scattering, volumetric scattering, and geometric scattering kernel weights describe the bidirectional reflectance distribution function (BRDF) properties of the surface. According to Brown de Colstoun et al. (1996) and Liang (2000) BRDF upscaling is largely linear. This means that ground estimations of BRDF can be aggregated to coarser resolutions (i.e., MISR 250 m) by calculating the area-weighted average of the kernel weights. The MISR-derived and upscaled BRDF model kernel weights can be directly compared; and the field-derived area-weighted kernel weights can be used to predict the red band BRF in all nine MISR cameras.

![Graphs](image)

Figure 8. Plots of red band BRF as a function of view zenith angle in the principal plane for site six: (a) BRF for sampling point 02, (b) BRF for sampling point 03, (c) BRF for sampling point 04, (d) BRF for sampling point 07. Negative viewing zenith angles indicate forward-scattering and positive values indicate backward-scattering. Continued…
Initial Shrub Cover Estimates from MISR/GO and RTLS-R Kernel Weights

In 2012 we used our extensive validation data to calibrate background BRDF prediction equations in MISR/GO model inversion efforts and to examine relationships that would allow empirically-predicted mapping of tall shrub cover. We were also able to compare our results with data from two recently-published raster maps of fractional cover for all shrubs and tall shrubs (height > 1 m) for the North Slope of Alaska, for the year 2000, based on interpretation of 30 m Landsat imagery using a Random Forest regression algorithm (Beck et al. 2011). These are the first “circa 2000 baseline” shrub cover maps ever produced and are a very useful reference, although there are some obvious limitations. These maps are hereafter referred to as “C2B”. Efforts to exploit the RTLS-R kernel weights in shrub cover mapping were based partly on observations of a notable spatial correspondence between the C2B maps and false color composites generated using kernel weights (see: http://csam.montclair.edu/~chopping/tundra/misr_landsat_comps.php).

To evaluate the 30 m “all shrub” and “tall shrub” maps we calculated minimum, maximum, mean and standard deviation statistics for all map cells falling inside each of our 418 CANAPI+Field validation site areas (each corresponding to a 250 13x 250 m MISR pixel). Mean C2B cover values > 100 or maximum C2B cover values = 255 were excluded (the maps are 8-bit with 255 used to mask missing/bad data). This resulted in \(N = 240 \) for all shrub map and \(N = 258 \) for the tall shrub map. The linear correlations between the 2010 reference cover values within the 250 m MISR cells with the ~2000 tall and all shrub map mean values are rather weak (R\(^2\) = 0.28 and 0.17, respectively), with relatively high Root Mean Square Error values (0.14 and 0.80, respectively). As expected, the “all shrub” cover values are overestimated with respect to the reference data (that are for shrubs > 50 cm). The tall shrub cover values are underestimated (Figure 9 (a)), although of course this may reflect an increase in tall shrub cover over the intervening ten year period.
Figure 9. Shrub cover versus reference data (a) Landsat-based C2B all and tall (> 1 m) shrub cover maps (b) MISR/GO tall shrub (> 0.5 m) cover map, (c) predicted from MISR RTLS-R kernel weight Z scores (d) predicted using MISR RTLS-R kernel weight Z scores and nadir camera BRFs.

The retrieved MISR/GO cover values show no correlation with the reference data, although they are of a reasonable magnitude. This is likely owing to the difficulty in accurately predicting the background BRDF. Beck et al. (2011) reported that the final all and tall shrub cover maps correspond well with their field measurements, with $R^2 = 0.72$ and 0.63, respectively, and RMSE of 0.17 and 0.23, respectively; however, the validation data set had a rather small N: only 24 sites. Inspection of the maps reveals some strong spatial correlations with the MISR/GO cover map, the MISR iso-vol-geo kernel weight composite, and the MISR nadir camera standard false color composite (Figures 10 and 11 (b)(c) and (f), respectively). This spatial correspondence does not appear to translate to a good match with reference data and there are both similar and dissimilar features in the Landsat- and MISR/GO-based maps (Figure 12). However, fractional shrub cover maps based on RTLS-R kernel-weight Z scores and RTLS-R kernel weight Z scores plus nadir camera BRFs are able to predict shrub cover with R^2 values of 0.35 and 0.50, respectively, both yielding an RMSE of 0.04 (Figure 9 (c) and (d); Figures 10 and 11 (d) and (e); note that the 2007 Anaktuvuk burn area can be clearly distinguished in the maps shown in Figures 11, and 12). This approach was found to be the most promising one for exploitation of multi-angle remote sensing in Arctic shrub mapping and in 2013 we pursued mapping using a regression tree model in order to avoid the generalization implicit in the use of a single regression equation.
Figure 10. (a) Landsat-based 2000 All Shrub map (black through white = 0 – 100%) (b) MISR/GO cover retrievals (0.0-0.1) (c) iso, vol, geo kernel weight false color composite (d) tall shrub cover predicted using RTLS-R model kernel weights (0.0-0.3) (e) tall shrub cover predicted using MISR nadir camera BRFs plus RTLS-R model kernel weights (0.0-0.3) (f) MISR nadir camera standard false color composite (RGN=NRG). In (d) and (e) surface water is masked to cyan/blue using N < 0.15.
Figure 11. (a) Landsat-based 2000 All Shrub map (black through white = 0 – 100%) (b) MISR/GO cover retrievals (0.0-0.1) (c) iso, vol, geo kernel weight false color composite (d) tall shrub cover predicted using RTLS-R model kernel weights (0.0-0.3) (e) tall shrub cover predicted using MISR nadir camera BRFs plus RTLS-R model kernel weights (0.0-0.3) (f) MISR nadir camera standard false color composite (RGN=NRG). The red dots indicted the locations of the 418 250 x 250 m reference sites. In (d) and (e) surface water is masked to cyan/blue using N < 0.15.
Figure 12. (a) Landsat-based 2000 All Shrub map (black through white = 0 – 100%) (b) MISR/GO 2010 tall shrub cover retrievals (0.0 – 0.1) (c) Landsat-based 2000 Tall Shrub map (0 – 100%) (d) MISR/GO 2010 tall shrub means height retrievals (0 – 1 m). Mean is over 250 m cell. The red irregular polygon indicates the area of the 2007 Anaktuvuk burn. Red ovals (boxes) indicate areas of agreement (disagreement).
MODIS/GO Model Inversions using Late Season Data

We examined the use of MODIS BRF data from later in the season (August 20 – September 10) initially in order to determine whether it is possible to exploit the greater shrub/grass brightness contrast in the red band at this time of year. Photographs from our field campaign of August 2009 indicate that tall shrubs remain green after tussock grasses and most prostrate shrubs have become senescent (Figure 13).

![Figure 13. Field photograph in mid-August 2009 showing the contrast between tall shrubs and lower plants](image)

We performed the same procedure for GO model inversion as with MISR BRFs (using kernel-weight-predicted non-shrub background BRDFs and adjusting the mean radius and number density parameters), for both the MODIS red and near-infrared (NIR) band data. The red band inversions were extremely noisy, with artifacts in both the cover and height maps. The model adjustment against NIR band BRFs more faithfully reflected landscape features (Figure 14) and the magnitudes of cover and height values are consistent with the expected ranges (~0.0 – 0.15; ~0 – 2 m). These results may reflect the lower level of attenuation of the signal by the atmosphere in the NIR wavelengths relative to the red wavelengths. However, since the red band inversion results were so poor, and correlations low, we did not pursue a full validation using the reference database, choosing instead to spend time examining the ability of RTLS-R kernel weights to predict shrub cover using empirical methods, as described above.
Figure 14. Cover and height maps from GO model inversions using MODIS 250 m BRF data for August 20 – September 10, 2010 (DOY 232-253) (a) fractional cover map from red band (black to white = 0.0 – 0.3) (b) fractional cover map from NIR band (0.0 – 0.3) (c) mean shrub height map from red band (black to white = 0.0 – 4 m) (d) mean shrub height map from NIR band (black to white = 0.0 – 4 m). Note that many of the small bright areas in the north-central part are small lakes.
North Slope of Alaska: Tall Shrub Maps from MISR

Fractional tall shrub cover on N. Slope of Alaska was mapped for 2000-2010 using MISR nadir camera blue, green, red, and NIR surface BRFs; MISR RTLS-R red band kernel weights, white sky albedo, and NBAR45 (nadir-equivalent, BRDF-adjusted reflectance); latitude; and elevation and slope from the National Elevation Dataset as predictor variables. The MISR Level 1B2 Terrain radiance scenes used were from the period 15 June – 31 July (mid-growing season), 2000-2001 and 2010 and were converted to full resolution surface BRF using MISR Toolkit routines that exploit the atmospherically-corrected MISR 1 km LAND Product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal (RTLS-R) BRDF model to retrieve and output kernel weights, model-fitting RMSE, white and black sky albedo, nadir-equivalent BRDF-adjusted reflectance (NBAR45); and Weights of Determination for all terms.

The predictor data were filtered for cloud and surface water (using model-fitting RMSE and nadir NIR BRF), and burned areas (using the MODIS Burned Area product for this period) and interpreted using a Boosted Regression Tree (BRT) model, an ensemble method. The BRT model was trained with our reference database that leverages field and image-based information on the shrub canopy (intermediate version). The database was divided into training and validation data sets and the trained model was used with the predictor variables listed above to predict fractional cover for all locations where valid MISR data were available. The initial model had 21 predictor variables but after simplifying it, a final model with 14 predictor variables ($R^2 = 0.52$) was used (Figure 16).

Caveats: The resulting maps suffer from gaps where there is missing data. This is mostly owing to the extremely cloudy nature of this region and also to the very conservative nature of albedo and cloud flags in the MISR LAND product that is used with custom MISR Toolkit routines to calculate surface BRFs on a 250 m grid. To mitigate this, we were obliged to take data from both 2000 and 2001 to make the earlier map. The maximum fractional cover at 250 m scale is 0.22 and the shrub growth rate in the Arctic is estimated at 0.4% per year: if in a decade the shrub fractional cover increases by 4% and considering that the standard error of the BRT model was 0.024, to be sure of detecting a real change it must be ≥ 0.025. However, because of the quilting effect in the input data to the BRT model, the changes isolated using these maps may be spurious. For this reason we adopted a median NIR BRF compositing rule for subsequent pan-Arctic tundra mapping efforts. This rule attempts to select an acceptable (non-cloud/water/burned) observation from near the middle of the series (Potapov et al. 2011).
Figure 16. Tall shrub maps for the North Slope of Alaska (a) composited fractional cover map for 2000-2001 (b) composited fractional cover map for 2010 (c) difference between composited fractional tall shrub cover maps for 2000-20001 and 2010. These maps suffer from a quilting effect resulting from the compositing process that dramatically changes fractional cover estimates; we therefore adopted a median selection rule for compositing for our pan-Arctic tundra mapping.
The five variables that contributed to the model the most were slope, red reflectance, isotropic kernel, near-infrared reflectance, white sky albedo, and NBAR45 (Fig. 17). From these plots, we can see that as the latitude increases, the shrub cover decreases; this means shrub cover decreases southward (Fig. 17c). Shrubs also are more prominent in steeper slopes (Fig. 17d). Variations of reflectance values for the red band show that where fractional cover is higher, red reflectance is lower (Fig. 17e). White sky albedo seems to be lower at higher fractional cover values (Fig. 17h) and the isotropic kernel show that the higher the fractional cover, the darker the area (Fig. 17f).

Figure 17. Predictor variables against the fitted function from the BRT model. (a) latitude for initial BRT model, (b) elevation for initial BRT model, (c – i) correspond to the seven variables with the highest contribution to the BRT model. (c) latitude, (d) slope, (e) red reflectance, (f) isotropic kernel, (g) near infrared reflectance, (h) white sky albedo, (i) NBAR45. Values inside the parenthesis represent the percentage contribution of the variable to the model. The patterns in (a) and (b) do not correspond to the observed characteristics of the area, thus they were adjusted in the model to more closely represent observed patterns.

Pan-Arctic Shrub Maps from MISR

We pursued tall shrub mapping for the entire Arctic using MISR nadir multispectral and multi-angle red band BRFs for 2000 and 2010 (Terra satellite paths 1 through 200: 1633 files for 2000 and 1697 files for 2010). We had already mapped the North Slope of Alaska using the BRT model, and collected additional MISR data from June 15 – July 31 2000 and 2010 to cover parts of Canada, Scandinavia, and Russia. The initial v.1 maps are almost completed as of this report and will be updated with more data to fill gaps. The magnitude of the effort required is illustrated by Fig. 18 that shows the sequence of operations required to extract and process MISR BRFs for GO
model inversion or Boosted Regression Tree prediction; and Fig. 19 that shows the coverage of the first run with selected MISR orbits/paths/blocks northern part of Scandinavia and eastern Russia (nadir camera false color composite; height/cover retrievals via MISR/GO model inversion; and model-fitting RMSE).

Fig. 18. Flowchart of MISR data extraction and processing operations for GO model inversion (a similar sequence is performed for empirical modeling but with compositing performed prior to prediction). Custom routines are used to extract up to 6 MISR
blocks at a time, convert to surface BRF and resample to a 250 m Lambert Azimuthal Equal Area grid. The data are then reformatted to ASCII files that can be used to invert the BRDF and GO models. Filtering operations are performed to isolate data contaminated by clouds, surface water, and burned area and compositing proceeds by selecting the lowest RMSE (GO model) or the overpass with the median NIR BRF (empirical models).

Figure 19. Composited MISR/GO maps of the northern part of Scandinavia and eastern Russia (a) MISR NRG False Color Composite (b) mean canopy height map (c) fractional tree cover map (d) GO model-fitting RMSE.
Tundra-Taiga Interface Maps from MISR

The changing tundra-taiga interface is of considerable interest with rapid climate warming at northern high latitudes. The taiga-tundra ecotone extends over 13,400 km and marks the transition between the northern limits of forests and the southern margin of the tundra. Mapping taiga canopies allows monitoring of displacements in the taiga-tundra boundary, that is undergoing rapid change from both natural and anthropogenic disturbance drivers, with warming occurring at a faster rate in high latitudes than anywhere else. As a result, Arctic vegetation zones are very likely to shift with wide-ranging impacts. The tree-line is expected to move northward and to higher elevations, with forests replacing tundra; vegetation is likely to increase carbon uptake, lowering land surface albedo; insect outbreaks and forest fires are very likely to increase in frequency, severity, and duration; and agriculture will have the potential to expand northward due to a longer and warmer growing season, where soils and drainage are suitable. However, the rate, extent, and direction of changes are difficult to predict because the future trajectories of environmental and disturbance factors (precipitation, drought, flood, insect response) are not well constrained or spatially uniform; observations of the tundra-taiga interface are thus required.

A first study was performed using geometric-optical canopy reflectance model inversion for canopy mapping in the taiga-tundra transition landscapes of the central Kola Peninsula, Russia (Chopping 2012). The Kola Peninsula is almost completely to the north of the Arctic Circle but has unusually warm winter temperatures for these latitudes (66 – 69° N), as it receives warmth from the North Atlantic Drift. Mapping was accomplished via inversion of the Simple Geometric-optical Model (SGM) against MISR BRFs (MISR red band BRFs for 08/06/00, Terra path 185, MISR blocks 35-36). The contribution of the background at the various Sun-target-view angles was provided by the RossThick-LiSparseMODIS-Reciprocal (RTLS-R) BRDF model that is used in the MODIS BRDF/Albedo processing, estimated a priori using the kernel weights of the same model with regression equations calibrated against 53 high spatial resolution image chips extracted from Google Earth (e.g., Figure 20).

Figure 20. CANAPI applied to Google Earth imagery for the area corresponding to a 250 x 250 m mapped MISR pixel in the Kola Peninsula study area (a) original Google Earth imagery (north is up) (b) converted to panchromatic image (c) rotated image showing CANAPI estimates of crown locations and sizes (solar direction is up) (d) crown map rotated to the original north-up orientation.
For GO model inversion, the mean crown radius (r) and tree number density (λ, trees per square meter) were adjusted by minimizing the absolute root mean square error (RMSE) cost function using the Praxis optimization algorithm. This allowed retrieval of fractional crown cover and mean canopy height ($h+b$, where h is mean crown center height and b is mean crown vertical radius). In northern high latitudes, model inversion is more challenging: there is far lower contrast between the tree canopy and the background and the solar path length is greater, resulting in a lower direct:diffuse irradiance ratio.

Model inversion results were assessed with respect to reference data obtained by analysis of very high resolution imagery using CANAPI. Crown cover was retrieved accurately (RMSE = 0.04, $R^2 = 0.65$), with mean canopy height somewhat less so (RMSE = 1.9 m, $R^2 = 0.54$). The maps of cover and mean height within 250 m cells match features in high resolution imagery (Figure 21).

![Figure 21](image)

Figure 21. Maps of forest cover and mean height obtained by inversion of the SGM model over a region on the Kola Peninsula, together with scatter plots of retrieved values vs estimates from semi-automated interpretation of high resolution imagery with the CANAPI algorithm.

The same methods were also used with data over a much larger area and for the year 2010, with similar results: although these results have not yet been validated, the spatial correspondences between the MISR/GO-based cover and mean height maps and forest density and land cover type in Google Earth imagery are clear (Figure 22).
Figure 2. (a) Landsat True Color imagery in Google Earth over the Kovdor mine and surrounding area on the Kola Peninsula (b) MSIR NRG False Color Composite (c) MISR/GO mean height map (d) MISR/GO fractional cover map. (e) zoom over the Kovdor mine area showing relatively dense forest to the north of the lake.
Dissemination of Results

Results and related relevant research have been presented at these meetings:

Dissemination/Meetings, continued…

Web

Project results will be documented at the web site at http://csam.montclair.edu/~chopping/tundra. This is a repository of data outputs (digital maps, tabular data), codes (macros, scripts, modeling and inversion programs, and test data sets), publication preprints, workshop reports, presentations, and posters. Our project and research work are also recorded on the NACP website (http://www.nacarbon.org), although this record requires updating and we are currently preparing our reference database for distribution (see attached draft metadata document).

Publications

Acknowledgments

We gratefully acknowledge the assistance of Dr. Vern Vanderbilt (NASA Ames) for advice on field radiometry and calibration target issues; Dr. K. Fred Huemmrich (UMBC), for generously sharing his field spectrometry data with us; Dr. Sawahiko Shimada (Tokyo University of Agriculture and visiting scientist at Montclair State University 2009-10) in helping to bring the Montclair-based graduate student up to speed with our MISR processing and BRDF model inversion scripts and codes. We are grateful to Dr. Lee Vierling (Geospatial Laboratory for Environmental Dynamics, University of Idaho) for kindly providing us with the PARABOLA BRF data he acquired in 1995. We also thank Pieter Beck of Woods Hole Research Center and his colleagues and co-authors for making the circa 2000 Baseline maps available. We would like to acknowledge the assistance of Joseph Youn and Michael Stoppay (CORE – Computer Operations for Research and Education, College of Science and Mathematics, Montclair State University). We are also grateful to Xiaohong Chopping for many useful suggestions.

References

Woody Vegetation Characteristics of 1065 Sites in Arctic Tundra across the North Slope of Alaska – Draft Metadata

Abstract

As part of a NASA-funded research project to map changes in tall shrub abundance in Arctic tundra, two 3-week field campaigns were carried out in the North Slope of Alaska to survey shrub structural characteristics at 24 sites. In addition to field data, estimates were extended to 1065 sites using high resolution panchromatic satellite imagery interpreted with the CANAPI crown detection algorithm (Chopping, 2011), adapted for tundra. Together, the field measurements and image-based estimates allowed the construction a robust and extensive database of tall shrub characteristics at 1065 sites across the North Slope of Alaska.

The field data presented include species name, crown height, crown radius, and spatial coordinates of all shrubs sampled at each site. The image-based estimates presented include mean height, mean crown radius, and fractional cover of shrubs at 1041 sites. Only shrubs taller than 0.5 m were surveyed: the purpose of this data collection was to document the structural characteristics of the woody vegetation taller than 0.5 meters at the sites, which were used for the training and validation of reflectance and empirical models (simple regression, neural network, bootstrap forest, boosted regression tree) that can retrieve shrub cover from bidirectional reflectance data (e.g., from the Earth-orbiting NASA Multiangle Imaging Spectro-Radiometer).

Background Information

Data Set Title: Woody Vegetation Characteristics of 1065 Sites in Arctic Tundra Across the North Slope of Alaska

Principal Investigator: Mark Chopping (mark.chopping@montclair.edu)

Key Researchers: Rocio Duchesne (Montclair State University, duchesneonr1@mail.montclair.edu)
Ken Tape (University of Alaska, Fairbanks, kdtape@alaska.edu).

Data Set Citation: Duchesne, R., Chopping M., and Tape, K. Woody Vegetation Characteristics of 1065 Sites Across the North Slope of Alaska. Data set. Available online [http://daac/ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.
Data File Information

Field Canopy Structure Data Files

The structural characteristics of woody vegetation (species, height, crown radius, and geographic location) surveyed at fourteen 250 x 250 m plots along the Chandler and Colville rivers and at ten plots along the Dalton Highway are contained in the files:

chandler_shrub_data.csv
dalton_shrub_data.csv

The files are in comma-delimited ASCII format with the first three line listing the file name, author, and date. The next 7 lines provide a description of the data records that are also described in the tables below. Sites are ordered along a latitudinal north-south gradient. Sampling sites along the Dalton Highway do not include species genus. Values of -999 represent no shrubs surveyed in the plot none were found in the belt transect.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
<th>Unit/Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Unique identifier of site number. The letters describe the name of the river the sites where the closest to, the following 4 digits is the collection year, and the last digits are the sites sequence north to south.</td>
<td>ASCII</td>
</tr>
<tr>
<td>Sp_genus</td>
<td>Scientific genus name up to 25 characters</td>
<td>ASCII</td>
</tr>
<tr>
<td>Height</td>
<td>Shrub height from ground to top most branch</td>
<td>Meters</td>
</tr>
<tr>
<td>Crown_radius</td>
<td>Shrub crown radius measured as half the distance from the left most branch to the right most branch</td>
<td>Meters</td>
</tr>
<tr>
<td>X co-ordinate</td>
<td>Geo-location of each shrub surveyed using UTM system</td>
<td>Meters</td>
</tr>
<tr>
<td>Y co-ordinate</td>
<td>Geo-location of each shrub surveyed using UTM system</td>
<td>Meters</td>
</tr>
</tbody>
</table>

Field Estimates Data File

Estimates of the structural characteristics of woody vegetation at 14 plots along the Chandler and Colville rivers and at 10 plots along the Dalton Highway are contained in the files:

field_estimates_data.csv
The files are in comma-delimited ASCII format with the first three line listing the file name, author, and date. The next 7 lines provide a description of the data records that are also described in the tables below. This dataset contains estimates of mean crown radius, mean shrub height, total number of shrubs, and fractional cover for the sites surveyed using the belt transect method.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
<th>Unit/Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Unique identifier of site number. The letters describe the name of the river</td>
<td>ASCII</td>
</tr>
<tr>
<td></td>
<td>the sites where the closest to, the following 4 digits is the collection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>year, and the last digits are the sites sequence north to south</td>
<td></td>
</tr>
<tr>
<td>Total_shrub</td>
<td>Estimate of the total number of shrubs at each sampling site</td>
<td>Count</td>
</tr>
<tr>
<td>Mean_height</td>
<td>Shrub mean height estimated as the average height of all shrubs surveyed</td>
<td>Meters</td>
</tr>
<tr>
<td>Mean_crown_radius</td>
<td>Shrub mean crown radius estimated as the average crown radius of all</td>
<td>Meters</td>
</tr>
<tr>
<td></td>
<td>individual shrubs surveyed</td>
<td></td>
</tr>
<tr>
<td>Fractional_cover</td>
<td>Shrub fractional cover in the plot surveyed</td>
<td>Range 0 to 1</td>
</tr>
<tr>
<td>X co-ordinate</td>
<td>Geo-location of each shrub surveyed using UTM system</td>
<td>Meters</td>
</tr>
<tr>
<td>Y co-ordinate</td>
<td>Geo-location of each shrub surveyed using UTM system</td>
<td>Meters</td>
</tr>
</tbody>
</table>

CANAPI Estimates Data File

The image-based estimates using the CANAPI (Canopy Analysis with Panchromatic Imagery) crown detection recognition algorithm (Chopping 2011) are in the file:

canapi_estimates.csv

The files are in comma-delimited ASCII format with the first three line listing the file name, author, and date. In the first file, the next 7 lines provide a description of the data records that are also described in the tables below.
Column Description

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
<th>Unit/Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Unique identifier of site number. Year of collection of high resolution imagery followed by four consecutive digits.</td>
<td>ASCII</td>
</tr>
<tr>
<td>Adj_total</td>
<td>Adjusted computer based total number of shrubs after applying regression equation based on calibrated field measurements.</td>
<td>Count</td>
</tr>
<tr>
<td>Adj_mcr</td>
<td>Adjusted computer based shrub mean crown radius estimate after applying regression equation based on calibrated field measurements.</td>
<td>Meters</td>
</tr>
<tr>
<td>Adj_cover</td>
<td>Adjusted computer based shrub mean crown radius estimate after applying regression equation based on calibrated field measurements.</td>
<td>Range 0 to 1</td>
</tr>
<tr>
<td>X co-ordinate</td>
<td>Center point X in 250 x 250m plot projected in an Albers Conical grid</td>
<td>Meters</td>
</tr>
<tr>
<td>Y co-ordinate</td>
<td>Center point Y in 250 x 250m plot projected in an Albers Conical grid</td>
<td>Meters</td>
</tr>
</tbody>
</table>

Site Descriptions

Sampling sites for both field campaigns fell in an altitudinal and latitudinal climatic gradient with the southernmost sites at higher elevations (~280 m) and influenced by the continental climate coming from the Brook Range, while the northernmost sites located at a much lower elevations (~95 m), where maritime climate conditions prevail. The coordinates and elevation were determined using a Global Positioning System (GPS). Elevation data are +/- 30m, and location +/- 10 m. The X and Y coordinates refer to the central point in a 250 x 250 m plot that corresponds to the standard Albers Conical Equal Area grid for Alaska.

<table>
<thead>
<tr>
<th>SITE</th>
<th>X</th>
<th>Y</th>
<th>ELEVATION (M)</th>
<th>NUMBER OF TRANSECTS</th>
<th>SAMPLING DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colville201001</td>
<td>98250</td>
<td>2190000</td>
<td>94</td>
<td>n/a</td>
<td>08/11-08/12</td>
</tr>
<tr>
<td>Colville201002</td>
<td>102500</td>
<td>2187250</td>
<td>96</td>
<td>5</td>
<td>08/10</td>
</tr>
<tr>
<td>Colville201003</td>
<td>97750</td>
<td>2172250</td>
<td>96</td>
<td>10</td>
<td>08/09</td>
</tr>
<tr>
<td>SITE</td>
<td>X</td>
<td>Y</td>
<td>ELEVATION (M)</td>
<td>NUMBER OF TRANSECTS</td>
<td>SAMPLING DATE</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Colville201004</td>
<td>97750</td>
<td>2171000</td>
<td>96</td>
<td>5</td>
<td>08/09</td>
</tr>
<tr>
<td>Chandler201005</td>
<td>87750</td>
<td>2128750</td>
<td>150</td>
<td>5</td>
<td>08/05</td>
</tr>
<tr>
<td>Chandler201006</td>
<td>86750</td>
<td>2128250</td>
<td>145</td>
<td>10</td>
<td>08/05</td>
</tr>
<tr>
<td>Chandler201007</td>
<td>89750</td>
<td>2120000</td>
<td>143</td>
<td>5</td>
<td>08/03</td>
</tr>
<tr>
<td>Chandler201008</td>
<td>89500</td>
<td>2119000</td>
<td>222</td>
<td>5</td>
<td>08/03</td>
</tr>
<tr>
<td>Chandler201009</td>
<td>81500</td>
<td>2095500</td>
<td>249</td>
<td>10</td>
<td>08/02</td>
</tr>
<tr>
<td>Chandler201010</td>
<td>81000</td>
<td>2092000</td>
<td>249</td>
<td>5</td>
<td>08/01</td>
</tr>
<tr>
<td>Chandler201011</td>
<td>78000</td>
<td>2092500</td>
<td>297</td>
<td>10</td>
<td>07/30-07/31</td>
</tr>
<tr>
<td>Chandler201012</td>
<td>70000</td>
<td>2090500</td>
<td>287</td>
<td>5</td>
<td>07/29</td>
</tr>
<tr>
<td>Colville201013</td>
<td>69750</td>
<td>2090000</td>
<td>289</td>
<td>10</td>
<td>07/28</td>
</tr>
<tr>
<td>Colville201014</td>
<td>69250</td>
<td>2088250</td>
<td>290</td>
<td>10</td>
<td>07/29</td>
</tr>
<tr>
<td>Dalton201101</td>
<td>203250</td>
<td>2216500</td>
<td>76</td>
<td>5</td>
<td>07/30/2011</td>
</tr>
<tr>
<td>Dalton201102</td>
<td>203500</td>
<td>2216750</td>
<td>78</td>
<td>5</td>
<td>07/30/2011</td>
</tr>
<tr>
<td>Dalton201103</td>
<td>213750</td>
<td>2178750</td>
<td>203</td>
<td>5</td>
<td>07/29/2011</td>
</tr>
<tr>
<td>Dalton201104</td>
<td>214000</td>
<td>2179000</td>
<td>225</td>
<td>5</td>
<td>07/29/2011</td>
</tr>
<tr>
<td>Dalton201105</td>
<td>207750</td>
<td>2128250</td>
<td>392</td>
<td>5</td>
<td>07/26/2011</td>
</tr>
<tr>
<td>Dalton201106</td>
<td>208250</td>
<td>2128000</td>
<td>392</td>
<td>5</td>
<td>07/26/2011</td>
</tr>
<tr>
<td>Dalton201107</td>
<td>209750</td>
<td>2110750</td>
<td>409</td>
<td>5</td>
<td>07/25/2011</td>
</tr>
<tr>
<td>Dalton201108</td>
<td>209750</td>
<td>2110250</td>
<td>438</td>
<td>5</td>
<td>07/25/2011</td>
</tr>
<tr>
<td>Dalton201109</td>
<td>183000</td>
<td>2082250</td>
<td>790</td>
<td>5</td>
<td>07/22/2011</td>
</tr>
<tr>
<td>Dalton201110</td>
<td>189000</td>
<td>2081250</td>
<td>752</td>
<td>5</td>
<td>08/04/2011</td>
</tr>
<tr>
<td>Dalton201111</td>
<td>182750</td>
<td>2082000</td>
<td>768</td>
<td>5</td>
<td>07/22/2011</td>
</tr>
<tr>
<td>Dalton201112</td>
<td>188500</td>
<td>2081250</td>
<td>n/a</td>
<td>5</td>
<td>08/04/2011</td>
</tr>
</tbody>
</table>
Descriptions of the sites sampled using the CANAPI-based algorithm include coordinates for the central point of each site. This information is provided in the canapi_estimates.csv data file.

Methods

The belt-transect method was used to survey 23 out of the 24 field sites except for site Chandler201001 where all shrubs were sampled. Transects were 5 m wide and 250 m long and their number per site varied between 5 or 10 depending on the difficulty to access the area. The belt transects ran parallel to each other and across the terrain altitudinal gradient. All shrubs taller than 0.5 m within the belt transect were surveyed by taking its photograph next to a measuring rod and its GPS coordinate. In the lab, the photographs were calibrated to estimate shrub height, defined as the vertical extent of the shrub and measured from its base to the top of its foliage, and crown radius, defined as the horizontal extent of the canopy and measured from the left-most branch to the right-most branch of the shrub.

Mean crown radius, mean shrub height, and fractional cover were estimated for each field site. Mean crown radius was estimated using only those observations where individual shrubs were clearly delimited. For that effect, clusters of shrubs where not included in the analysis because the boundaries of the shrubs could not be identified. Mean shrub height was estimated using all the observations, both individual and clusters of shrubs. Fractional cover was estimated dividing the sum of all shrub crown area by the area of the belt transects sampled at each site. To calculate the sum of all crown areas, both, surveyed individual shrubs and clusters of shrubs were included; a cluster was considered one observation. Since the belt width was 5 m, individual shrubs and clusters that exceeded 5 m wide were adjusted to the maximum width of the belt transect.

The image-based shrub estimates were obtained by exploiting the CANAPI algorithm in conjunction with high resolution panchromatic scenes purchased for the project and through the National Geospatial-Intelligence Agency Commercial Archive Data (http://cad4nasa.gsfc.nasa.gov/) that provides access for NASA Earth Science Investigators. CANAPI is a user-tunable algorithm that uses high resolution panchromatic imagery to identify and measure tree or shrub crowns and heights via estimating the length of the shadow cast (Chopping, 2011). The code is implemented as an ImageJ macro that is included in the file: canapi_macro_tundra.txt. The code is implemented as an ImageJ macro that is included in the file: canapi_macro_tundra.txt. The settings used to obtain the canopy statistics along with image characteristics are listed by site in the file: canapi_settings.txt (licensing restrictions mean that the imagery cannot be distributed). CANAPI tends to underestimate fractional cover when there are cluster of shrubs present in the scene because it is unable to break down them into individual shrubs. Where vegetation is sparse, CANAPI estimates are very close to field data. Similar behavior occurred for the total shrub number estimates. On the other hand, mean crown radius CANAPI estimates are always lower in comparison with the field estimates. The difference (always less than 0.3 m) seems to be a
systematic error of CANAPI probably due to pixel resolution (i.e. panchromatic QuickBird resolution is 0.6 m).

In order to adjust the fractional cover, mean crown radius, mean height, and total number of shrubs CANAPI estimates, regression coefficients were derived by finding the relations between the CANAPI estimates and the corresponding field estimates via simple linear regressions, for 10 out of the 24 field sites. Outliers were omitted from the analysis. High R^2 values for fractional cover and mean crown radius (0.83 and 0.89 respectively) suggest that it is appropriate to use the regression coefficients to adjust CANAPI estimates (Figure 1a&b). Since the regression for total number of shrubs had a medium-low R^2 (0.42), using the regression equation to adjust CANAPI estimates must be done with caution.

![Diagram](image)

Figure 1. Scatter plots displaying relationships between CANAPI-derived and Field estimates for 10 sampling sites. (a) correlation for total number of shrubs ($R^2 = 0.42$), (b) correlation for fractional cover ($R^2 = 0.83$), and (c) correlation for mean crown radius ($R^2 = 0.89$).
Subsequently, these regression coefficients were used to adjust image-based estimates obtained for 1013 sites of 250 x 250 m each across the North Slope of Alaska. These sites were explicitly chosen to include representatives from all four physiognomic vegetation types and from across the broad latitudinal and longitudinal range of the North Slope.

References

Point of Contact:

Dr, Mark Chopping
Department of Earth and Environmental Studies
Montclair State University
1 Normal Avenue
Montclair, NJ 07043
Phone: (973) 655-7384
Email: mark.chopping@montclair.edu

Revision Date: March 31, 2014