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In this paper the classical and generalized numerical Rogers—Ramanujan continued fractions
are extended to a polynomial continued fraction in one and two dimensions. Using the new
continued fractions, the fundamental recurrence formulas and a fast algorithm, based on matrix
formulations, are given for the computation of their transfer functions. The presented matrix
formulations can provide a new perspective to the analysis and design of Ladder-continued
fraction filters in one and two dimensions signal processing. The simplicity and efficiency of the
presented algorithms are illustrated by step-by-step examples.
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1. Introduction

Continued fraction expansions (CFE) have been studied for many centuries since the
series of quotients in Euclid’s greater common divisor algorithm generated a con-
tinued fraction expansion.? After a long time period, CFE theoretical ideas and
algorithmic methods were transferred to the engineering field. CFE have been used
extensively in the areas of classical network theory, signal analysis/processing and
control systems. Especially, CFE have been applied in digital filtering having lattice
and ladder structures, in feedback control system design, in the circuit and state

space realization of regular and multidimensional filters and systems.? 19
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In literature there exists many types of CFE with different structural charac-
teristics and behavior. In the realization theory area of two dimensional (2D) sys-
tems, CFE play an important role because it has been shown that in the case where a
2D transfer function is expanded into any type of CFE, it can be realized with a
minimum number of delay elements.”%®? Today the minimality is not related to the
financial cost of the memory space, but to the execution speed of the filter.

In this paper the classical and the generalized Rogers—Ramanujan CFE types,
are extended to one and two dimensions, in the polynomial sense. The new polynomial
CFE have unique structures, with the variables to be of increasing order. As the order
of the CFE increase, the degree of the complexity increases rapidly. In addition, in this
paper, the matrix fundamental formula for inverting CFE is modified and applied for
the inversion of the proposed one dimensional (1D) and 2D CFE structures. The
fundamental recurrence formulas, that also is used in the paper, and Routh’s algor-
ithm are other methods, among many, for inverting continued fractions.'®!”

The presented structure utilizes an analysis based on matrix formulations that
provides a new insight to a continued fraction framework in the ladder filtering
design. It would be possible, using the new matrix formulations, to modify a con-
tinued fraction-ladder based filter structure in the direction of minimizing the coef-
ficient sensitivity and dealing with the roundoff effects.'® It is noted that not all 1D
Ladder structures based on continued-ladder expansions have been efficient with
respect to signal processing issues like sensitivity and roundoff error, in many cases
1D digital Ladder structures can be implemented with lower coefficient word lengths

11—-15

than the conventional structures.™®

2. Rogers—Ramanujan CFE

The “classical” Rogers—Ramanujan continued fraction expansion has the following
form! 12
ql /5
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q2

3
144

T(1,q9) =

1+

where |g| < 1.
Recently, Berndt-Yee proposed the “generalized Rogers—Ramanujan continued

fraction” '

T(a,q) = H;q , 2)
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where |¢| < 1, and a is a complex number.
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3. 1D and 2D Polynomial CFE
3.1. 1D polynomial CFE

Two symmetric generalized structures of the classical Rogers—Ramanujan CFE,"
and the generalized Rogers—Ramanujan CFE,'* extended to polynomial 1D, in the
frequency-domain, are expressed as follows,

Tp(z) =1+ G

(3)

1 n 0222

3
1 + asz

4
1 + a,z

an—lzn71

14 nl
- 1+ a,z"
and

Ty(z) = s , 4)

a92?

asz’®

14 Qp_q 2n—1
1+a,z"

where {ai,a,,...,a,} are real coefficients of the CFE, and z, is complex (delay
element). It is noted that z = Ae’?, A is the magnitude of z, and ¢ is the angle.?’ The
CFE Tp(2) is a natural extension to the polynomial 1D of the generalized
Rogers—Ramanujan continued fraction (2) and of the “classical” Rogers—Ramanujan
CFE (1). The 1D CFE T,(z), Eq. (3), can be considered as the generalized 1D
continued fraction of the Rogers—Ramanujan type. It is noted that the generalized
2D CFE T4(z) (3) will be considered throughout this study, except for two examples
that the Tz(z) CFE used.

Using the fundamental recurrence formulas (FRF) to invert the continued
fraction (3), yields.”!

Therefore the transfer function T4(z), using the results of the above Table 1, is
defined as,

(5)
where Ny, (2) is the numerator polynomial that is equal to N,,,;(2) and Dy, (z) is the

denominator polynomial that is equal to D,,;(z). For simplicity this notation will be
used throughout the paper.
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Table 1. Fundamental recurrence formulas for Eq. (3).

Numerator of T'(z) Denominator of T'(2)
No(z) =1 Dy(z) =1
Ni(z) =1+a Di(2) =
rL+1(Z) = N + an+lzn lN —1 D11,+1(Z) = DN + aIL+1zn+1Dn—1

3.1.1. 1D example
Consider the following low-order 1D CFE:

blz

1 + b323
Using the FRF yields,
Numerator of T} (z) Denominator of Tj(z)
Ny(z) = Dy(z) = 1
Ni(z) = 1 + b2 D(2) =
Ny(2) =1+ bz + by2? Dy(2) =1+ byz?
N3(z) = 1+blz+b2Z +b3Z (1+blz) D3(Z) = 1+b22 +ng

Therefore the transfer function T} (z), of (6) is

Ny, (2)
Ti(2) = =——=, 7
1( ) DTl (Z) ( )
where
Nz (2) = 14+ b2+ byz® 4 b3z® + by bzt
Dy (2) = 1+ byz? 4 b32? ’
with Nr, (2) = N3(2) and Dy, (2) = D;(2).
3.2. 2D polynomial CFE
The 1D CFE (3), extended to two dimensions (2D), takes the following form:
Ty(z1,20) =1 + algl (8)
122
14+ 5
14 221
1+ by Z%
!

140,25
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It is noted that z;, 2, are delay elements.
Inverting the above CFE (8), using the fundamental recurrence formulas, the
resulting 2D transfer function will have the following form:
N, (21, 2)

Ty(21,2) = Dy (21,29) (9)

3.2.1. 2D example
Consider the following low-order 2D CFE:

a2y

Ts3(z1,29) = 1+ b7

(10)

1+

14 G2Z%

1 =+ bQZ%

Using the FRF, to invert the continued fraction (10), the 2D numerator and
denominator polynomials are:

Numerator of T3(z, 29)
No(z1,22) = 1
Ni(z1,2) =1+ a1z
Ny(z1,29) =1+ a1z; + b2
(21, 22)
(21, 22)

=1+a1z +bz+azi(l+a2)
21,2) =1+ a1z + b2 + ap27 (1 + a121) + (1 + ay 21 + by 20)by 25

215 %2

Ns
Ny

and

Denominator of Ty(z1, 25)

Therefore the transfer function T5(z1, 2), of (10) is:

NTg(zlazQ)
‘DT;;(Zh 22) 7

Ts(21,2) = (11)

Np(z1,2) = 1+ a1, + by 2o + ayzi + ayas i 4 byz3 + ajbyz 25 + bibyz

Dr,(21,2) = 1+ b1z + ayz} +byz3 +byby2h .
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It is noted that due to the nature of the Rogers—Ramanujan continued fractions,
some terms in the corresponding 1D and 2D transfer function are missing.

4. 1D and 2D CFE Inversion

In the following subsections the modified inversion matrix formulations presented for
the proposed 1D and 2D CFE of Rogers—Ramanujan types.

4.1. 1D matrix inversion formula

Using the independent results of matrix formulation for continued fraction
inversion,” ~?° the transfer function (5) of the 1D continued fraction (3) can be
determined as follows:

S| -r@n.. (12)

where Q = Czl,z*(QZ,z2 Q3,z37 R anl,z"*l .
The dimensions of the matrices P, Qy ., Qy .2, Q3.3, Q,_1..1 are (2 x 2), and of
the vector r,, . is (2 x 1), having the following structures:

(1 1
P =
o)
(1 1 1 1
Qlﬁz - a2 0:|a Q2,22 - |:(1222 O:| )
[ 1 1 1 1
QS,z3 - _CL32’3 O:l’ anl,z’”*l - |:an1znl 0:| )
! :|
Tpon = .
) _anzn

Therefore,

1 1 1 1 1
‘ . [ ] . (13)
azt 0 a,_12" 1 0| Llapnz,

For faster calculation the matrix multiplication should start from right-to-left.?*

4.1.1. 1D numerical example-1

Consider the following polynomial 1D CFE:

z

222
14323

1+

(14)
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Using the FRF, to invert the continued fraction (14), yields:

Numerator of Ty(z) Denominator of T,(2)
No(2) =1 Dy(2) =1
Ni(z)=1+z Di(z)=1

No(z) =1+ z+ 222 Dy(z) =1+222
Ny(2) =1+ 2+222+323(1 +2) Dy(2) =1+ 222 + 323

Therefore the transfer function T,(z) of (14) is

T(2) :g—p (15)

~—

where
Ny, (2) = 1+ 2+ 222 4323 + 324,
Dr(z) = 14222 +323.

Using the 1D matrix inversion formula (12)

el AL O L

p Qi Q.2 Ty:3

P Q1. Q,.2 T3.3

14 2+ 222 4323 + 324

(16)
14222 + 323

The resulting vector polynomial (16) verifies the 1D transfer function result given
in Eq. (15).

4.1.2. 1D numerical example-2

Consider the following polynomial CFE, which is the extension to 1D of the
“generalized Rogers—Ramanujan” CFE, given in Eqgs. (2) and (4):
1

Ts(z) = — - (17)
14—
+ 1+ 322
Using the FRF, to invert the above continued fraction (17), yields:
Ny, (2)
T5(2) = 7 (18)

B Dr, (2)



580 G. E. Antoniou & P. A. Katsalis

where

NTS(Z) = 1+3Z2,
Dr.(z) = 1422+ 322,

Since Eq. (17) has the structure of the T(z), Eq. (4), the first two matrices of the
2D inversion formula (12) should be replaced by,

10
[
b0

) 1L L

P’ Qi Ty.2

Therefore,

p’ Q1. ry.2
14 322
= ) (19)
1422+ 322

The resulting vector polynomial (19) verifies the 1D transfer function result given
in Eq. (18).

4.2. 2D matriz inversion formula

Using the independent results of matrix formulation for continued fraction
inversion,? “?° the transfer function (9) of the 2D continued fraction (8) can be
determined as follows:

R T (20)

D(21, 22)
where Q = QLlel,zZQQ,zfQQ,z%a B Qn,z;"'
Note that the dimensions of the matrices P, Q; ., Qy .,, sz%, QQ’%, Qn,zy are
(2 x 2), and of the vector r,, .», is (2 X 1), having the following structures:

(11
P =
1)
1 1 1 1
Ql,zl - L a1z 0:|a Ql,zz - |:b1Z2 0:|7
Q [ 1 ] Q [ 1 1}
2t Lay2? 0]’ 2% byz3 0]’
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1 1
Qn,z’f = a Zyll 0 )
n

1
r,,n = .
e bz |

N(z1,2) 111 1|[1 1][1 1
D(z1, 23) 1o la121 0] |bizy O |ay2? 0
1 1 1 1 1
x . (21)
byz3 0 a,zt 0| |b,2%

For faster calculation, the matrix multiplication should start from right to left.?”

Therefore,

4.2.1. 2D numerical example-1
Consider the following polynomial 2D CFE:
Ts(21,22) =1 +
1+
1+

222
322

1+423

Using the FRF to invert the continued fraction (22), the numerator and
denominator polynomials are:

Numerator of Tg(2q, 25)

and

Dy(z1,2) =1

Di(z1,2) =1

Dy(z1,20) =1+ 22

Dy(z1,2) = 1+ 22y + 323

Dy(21,25) = 1+ 22 + 327 + 423(1 + 22)
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Therefore the transfer function Ty(zq, 25) of Eq. (22) is

NTG (21, Zz)
TG (z1> z2) DTG (Zla 22) ’ ( )

where
Np(21,2) = 1421 + 22 + 323 4+ 323 + 422 + 42,23 + 823,
Dr (21,2) = 1+ 22 + 323 4 423 + 823
Applying the 2D matrix inversion formula, given in Eq. (20), yields

N, (21,
|: T6(21 ZZ):| = P(QLZlQl.ZzQZZ%Q?,ZE)r?,ZE

DTG(ZlaZ2)
or
Np(21,2)] 1 1 11 11 11
‘DTG (Zl, ZZ) - 1 0 a| 21 0 b1 Z9 0 Qay Z% 0
_———
P Qi Qi Q,.:
LT
ng%
N —
rZ.zZ
or
Np(z1,20)1 [11][11][11][11][1
Dy (z,2)|  |[10] |2 0] [22 0] [32] 0] |423
N N e N e e e e
P Qi Qi QQVZ% rz_;%
or

1+ 2 + 22 + 323 + 323 + 423 + 42,23 + 823
1+ 22, + 323 + 423 + 823

(24)

]

The resulting vector polynomial (24) verifies the 2D transfer function result given
in Eq. (23).

4.2.2. Numerical example-2

Consider the following polynomial CFE, which is an extension to 2D of the 1D
“generalized Rogers—Ramanujan” CFE, given in Egs. (2) and (4),

1

Ty (21, 2’2) = Z . (25)
1+—

1+

1+

222
322
1+4z23
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Inverting, the 2D transfer function (25), yields

N7(21, 25)

D7(Zla Z?)

B 1+ 22 + 323 + 423 + 823

147y + 323 + 42125 + 323 + 422 + 22, + 823

T7(21,29) =

(26)

Since the transfer function T7(z1,25), Eq. (25), has the structure of the Tz(%),
Eq. (4), extended to 2D, the first two matrices of the inversion formula (20) should be
replaced by,

10
P = .
i)
Therefore,
Nr(z1,22)7  [1 0] [ 1 1 11 11
DT7 (Zl, 22) N 1 1 aj 21 0 a9 29 0 as Z% 0
~—
P Qi Qi Q.2
LT
as25
~——
r2,zg
C[roo]fr o1 1 1 11
11 1| |z 0] ]2z 0] 322 0
N e N e’ e
P Qi Qi Q.2
o 1
422 | -
——
rZ.z2
Finally,
{Nn(zl,zZ)] | 1422+ 327 + 425 + 823 @)
Dr, (21, 25) 142+ 323 + 42123 + 327 + 423 + 22, + 823 |

The resulting vector polynomial (27) verifies the 2D transfer function result given
in Eq. (25).

5. Conclusions

In this paper the well known Rogers—Ramanujan CFE were considered. Continued
fraction expansions have been studied extensively by mathematicians and engineers
for many decades and have found applications in many areas of engineering and
sciences. The purpose of this paper is two-fold. First, the numerical “classical”
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and “generalized Rogers—Ramanujan” CFE were extended to polynomial 1D
and 2D continued fractions. The new proposed structures are aesthetically elegant,
containing fascinating and surprising results. In the 2D case, the delay elements z;
and z, appear having an alternating ladder structure. Secondly, a fast algorithm
based on matrix formulations along with the fundamental recurrence formulas, was
presented for the inversion of the continued fractions. It is noted that the results of
this paper can be easily extended to higher dimensions. The matrix formulations of
the presented continued fraction expansion may offer a new perspective to the fur-
ther study of Ladder-continued fraction filters in different aspects of signal processing
analysis.
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